Flame Retardancy of Carbon Fibre Reinforced Sorbitol Based Bioepoxy Composites with Phosphorus-Containing Additives

نویسندگان

  • Andrea Toldy
  • Péter Niedermann
  • Ákos Pomázi
  • György Marosi
  • Beáta Szolnoki
چکیده

Carbon fibre reinforced flame-retarded bioepoxy composites were prepared from commercially available sorbitol polyglycidyl ether (SPE) cured with cycloaliphatic amine hardener. Samples containing 1, 2, and 3% phosphorus (P) were prepared using additive type flame retardants (FRs) resorcinol bis(diphenyl phosphate) (RDP), ammonium polyphosphate (APP), and their combinations. The fire performance of the composites was investigated by limiting oxygen index (LOI), UL-94 tests, and mass loss calorimetry. The effect of FRs on the glass transition temperature, and storage modulus was evaluated by dynamic mechanical analysis (DMA), while the mechanical performance was investigated by tensile, bending, and interlaminar shear measurements, as well as by Charpy impact test. In formulations containing both FRs, the presence of RDP, acting mainly in gas phase, ensured balanced gas and solid-phase mechanism leading to best overall fire performance. APP advantageously compensated the plasticizing (storage modulus and glass transition temperature decreasing) effect of RDP in combined formulations; furthermore, it led to increased tensile strength and Charpy impact energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flame Retardancy of Sorbitol Based Bioepoxy via Combined Solid and Gas Phase Action

Flame-retarded bioepoxy resins were prepared with the application of commercially available sorbitol polyglycidyl ether (SPE). The additive-type flame retardancy of the cycloaliphatic amine-cured SPE was investigated. Three-percent phosphorus (P)-containing samples were prepared with the application of the liquid resorcinol bis(diphenyl phosphate) (RDP), the solid ammonium polyphosphate (APP), ...

متن کامل

Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications

The recent implementation of new environmental legislations led to a change in the manufacturing of composites that has repercussions on printed wiring boards (PWB). This in turn led to alternate processing methods (e.g., lead-free soldering), which affected the required physical and chemical properties of the additives used to impart flame retardancy. This review will discuss the latest advanc...

متن کامل

Particle Distribution of Solid Flame Retardants in Infusion Moulded Composites

Resin transfer moulding (RTM) is commonly used for the production of high-performance fibre-reinforced polymer composites. In numerous application areas, the addition of fillers is necessary to enhance some properties of the polymer matrix or provide it with additional properties, such as flame retardancy. As many of the applied additives are solid phase, the reinforcement layers may filter the...

متن کامل

Phosphorus-based Flame Retardancy Mechanisms—Old Hat or a Starting Point for Future Development?

Different kinds of additive and reactive flame retardants containing phosphorus are increasingly successful as halogen-free alternatives for various polymeric materials and applications. Phosphorus can act in the condensed phase by enhancing charring, yielding intumescence, or through inorganic glass formation; and in the gas phase through flame inhibition. Occurrence and efficiency depend, not...

متن کامل

Treasure of the Past VIII: Molecular Basis of Flame Inhibition*

The role played by inorganic chemical additives in fire retardancy and flame inhibition is considered. Particular attention is given to the molecular level aspects of commercially important systems containing compounds of antimony, halogens, and phosphorus. The flame inhibiting function of metal containing additives is also discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017